# Program to Find the sum of series 1/1!+2/2!+3/3!.....+N/N!

## Problem Statement:- Program to Find the sum of series 1/1!+2/2!+3/3!.....+N/N!.

Data requirement:-

Input Data:- n

Output Data:-Sum

Program in C

## Here is the source code of the C Program to Find the sum of series 1/1!+2/2!+3/3!.....+N/N!.

Code:

#include <stdio.h>
int main()
{
int nifact = 1;
double sum = 0.0;

printf("Enter the range of number:");
scanf("%d", &n);

for (i = 1i <= ni++)
{
//Calculating Factorial of each ith Number
fact *= i
sum = sum + ((double)i / (double)fact);
}
printf("The sum of the series =%0.2lf"sum);
}

Input/Output:
Enter the range of number:5
The sum of the series = 2.71

Program in C++

## Here is the source code of the C++ Program to Find the sum of series 1/1!+2/2!+3/3!.....+N/N!.

Code:

#include <iostream>
using namespace std;
int main()
{
int nifact = 1;
double sum = 0.0;
cout << "Enter the range of number:";
cin >> n;

for (i = 1i <= ni++)
{
fact *= i;
sum = sum + ((double)i / (double)fact);
}
cout << "The sum of the series = " << sum;
}

Input/Output:
Enter the range of number:6
The sum of the series = 2.71667

Program in Java

## Here is the source code of the Java Program to Find the sum of series 1/1!+2/2!+3/3!.....+N/N!.

Code:

import java.util.Scanner;

public class Sum_of_Series1 {
public static void main(String[] args) {
Scanner cs = new Scanner(System.in);
int nifact = 1;
double sum = 0.0;
System.out.println("Enter the range of number:");
n = cs.nextInt();

for (i = 1i <= ni++)
{
fact *= i;
sum = sum + ((doublei / (doublefact);
}
System.out.println("The sum of the series = " + sum);
cs.close();
}
}

Input/Output:
Enter the range of number:
30
The sum of the series = 2.718281874018304

Program in Python

## Here is the source code of the Python Program to Find the sum of series 1/1!+2/2!+3/3!.....+N/N!.

Code:

n = int(input("Enter the range of number:"))
sum = 0.0
fact = 1
for i in range(1n+1):
fact *= i
sum += i/fact
print("The sum of the series = "sum)

Input/Output:
Enter the range of number:6
The sum of the series =  2.7166666666666663

Most Recommend Questions:-

More Questions:-